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Abstract. As models for polymer diffusion we consider the motion in two dimensions and
three dimensions of four random walkers restricted by different holonomic constraints. The
random walkers perform uncorrelated steps, which obey algebraic waiting-time distributions.
We provide numerical results for the centre-of-mass motion and analytical approximations for
the short- and long-time diffusion constants. Distinct from the two- and three-walkers problem
we encounter here—depending on the constraints—partial nontrivial decoupling of the motion.

1. Introduction

Correlated motions of several random walkers occur in many physical problems. In
previous works [1, 2] we have focused on sets of random walkers moving under holonomic
constraints, a subject of much interest in polymer science; thus, according to the kink–
jump model [3, 4] a macromolecular chain is described throughN beads (random walkers)
connected byN − 1 rigid rods, where the beads move according to specific rules (i.e. 180◦

rotations of two neighbouring rods around the axis defined by the neighbouring beads and
free orientations of the end beads). Our study is furthermore motivated by the diffusion of
atomic clusters over surfaces and in the bulk [5–8]. We denote the waiting-time density
(WTD) between consecutive steps of each bead by9(t).

If the WTD is exponential then the number of jumpsn(t) within a time interval(0, t)
is Poisson distributed [9, 10]. Transport in amorphous materials [11, 12] or reactions and
relaxations in disordered media [13–16] often lead to more complex WTDs. Thus, in melts
and dense solutions a kink–jump requires some free volume; this leads to the Glarum model
[17] and continuous-time random walks (CTRW) [11, 15, 18]. Given that the free volume
is provided by randomly moving vacancies, the WTD follows a power law [15, 18]. WTDs
of this kind have already been used in order to describe polymer melts and concentrated
solutions [19].

In previous works the motion of a dumbbell in one dimension [1] and that of an
equilateral triangle in two dimensions [2] were considered. The dumbbell consists of two
beads (random walkers) connected by a rigid segment and moves along a line through flips,
such that one bead pauses and the other one jumps over it. By this the centre-of-mass (CM)
of the dumbbell makes a step to the left (to the right) when the right (the left) bead moves,
and the overall shape of the dumbbell is unchanged [1]. The two dimensional motion of an
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equilateral triangle (made of three random walkers, its vertices, and three rigid segments,
its sides) according to the kink–jump model is similar: when one vertex moves, the triangle
flips around the side whose two vertices are at rest. This corresponds to a reflection around
this side; the triangle’s shape is unchanged and its CM performs a random walk on a two-
dimensional hexagonal lattice [2]. In both cases (dumbbell and triangle) the spatial and
temporal aspects of the motion are strongly coupled [1, 2].

In this paper we analyse the dynamics of four random walkers under holonomic
constraints. When four walkers are connected to make a ring (systemQ) and move
according to kink–jump rules, then the system can change (distinct from [1] and [2]) its
shape. We compare this model with two other (shape-preserving) situations concerning
four walkers, namely a square in two dimensions (systemS) and a tetrahedron moving in
three dimensions (systemT ), both moving through reflections (flips). In each case we first
investigate the CM’s motion by means of numerical simulations. Using algebraic WTDs
we find that in all three cases the CMs move diffusively at short and long times, with a
subdiffusive cross-over region in between. We stress that various statistical effects, such
as the subdiffusive cross-over region, occur even for a small number of involved random
walkers if only the WTD is broad [19]. We provide analytical approximations for the short-
and long-time diffusion coefficients. By comparing two different systems (S andQ) in
two dimensions it turns out that pinning (the pausing of one random walker for a long
time) is a fundamental feature in the determination of the long-time diffusion coefficient. A
comparison of the two-dimensional versus three-dimensional motion shows that the temporal
aspects (i.e. the WTD) are decisive, whereas the spatial aspects are less important.

2. The models

As mentioned, we shall study the motion of four random walkers under holonomic
constraints in two and three dimensions. We start with systemQ, where each of the
four random walkers is placed on the edges of a square lattice of unit length,aQ = 1.
Q describes a polymer ring and moves through kink–jumps. We display the situation in
figure 1(a), where we denote the random walkers by 1, 2, 3 and 4 and start from a square
configuration. As a first possible move, walker 1 moves to 3 (this is the only possibility
for 1 to move). Afterwards 1 as well as 3 are solely able to return to 1’s former location.
Random walkers 2 and 4 may jump by flipping around their opposite sides. Figure 1(a)
also shows some of the places which may be visited byQ’s CM in the course of time.

The second systemS is a square, whose shape stays unchanged during its motion. We
envisage the random walkers involved to be placed at the centre ofS’s four sides. Making
the dumbbell parallel,S moves by flips, i.e. reflections ofS with respect to its sides, see
figure 1(b), where walker 3 stays fixed, while walkers 1, 2, 3 and 4 move to mirrored
positions; we associate this flip with walker 1. At each flipS’s CM moves over a distance
equal to the square’s lateral lengthaS = 1. In figure 1(b) we show a series ofS’s jumps,
starting with a jump of 1 followed by jumps of 2 and 3. The possible positions of the CM
form a square lattice.

As a third case we analyse a tetrahedronT , which moves in three dimensions. The
random walkers sit atT ’s vertices and the motion again involves reflections: each walker
jumps by being reflected with respect to the plane spanned by the other three vertices,
see figure 1(c). Note thatT extends the dumbbell (one dimension) and the triangle (two
dimensions) models to three dimensions, and that, analogously toS, stays form invariant
during the motion. A few ofT ’s jumps and the complex wayT ’s CM move are shown in
figure 1(c). Again T ’s lateral lengthaT is taken to be 1.
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(a)

(b) (c)

Figure 1. (a) A series of displacements ofQ, which start with random walker 1, followed by
moves of 4 and 1. The squares indicate positions which can be visited byQ’s CM. (b) A series
of displacements of configurationS. Note thatS’s CM performs a random walk on a square
lattice. (c) Two displacements ofT .

We now turn to the temporal development of the motion, and assume that all jumps
(flips) involved follow a preassigned WTD, which gives the waiting time between two
consecutive steps of the same random walker. Each of the four random walker follows its
own internal clock: because of the constraints, however, the overall motion of the systems
(S, Q or T ) is quite complex, even when the internal clocks are uncorrelated and the WTD
is the same for all walkers. Moreover, for the renewal process connected with9(t) two
situations may be distinguished [9, 10].

(1) The first event takes place att = 0. The WTD for the subsequent jumps is9(t).
Such renewal processes are calledordinary (ORP).

(2) The WTD90(t) for the first event differs from9(t), the WTD for all following
events. The renewal process is now calleddelayed.

If µ = ∫∞0 9(t) dt < ∞, processes which started a long time ago are in equilibrium;
for suchequilibrium renewal processes (ERP) one has

90(t) = 1

µ
[1− F(t)] (1)

with F(t) = ∫ t0 9(s) ds. It can be shown [10] that only for ERPs the average valueN(t)

of the number of renewalsn(t) in the time interval(0, t) equals

N(t) = 〈n(t)〉 = t

µ
(2)



5738 M W Walser et al

and that the forward WTDH(t, ξ), which is the propability that the first renewal epoch
following epocht lies within (t, t + ξ), is given by

H(t, ξ) = 1

µ

∫ ξ

0
[1− F(s)] ds =

∫ ξ

0
90(s) ds (3)

i.e. is independent oft . For ORPs, equations (2) and (3) are only valid in the limit of large
t [10]. We will mainly focus on the following WTD [1, 2, 19]:

9(t) = γ

(1+ t)γ+1
with γ > 1. (4)

This function shows an algebraical behaviour,9 ' γ /tγ+1 for larget , and is well behaved,
with µ <∞, for all t .

3. Numerical simulations

We used the WTD equation (4) to numerically determine the motion of the CM for all three
models (S, Q andT ) considered. We performed simulations for a wide range ofγ -values
and proceeded as follows. First we fixed the value ofγ in equation (4); then we listed for
each realization of the motion the times at which each walker jumps by using90(t) and
9(t) for ERP and of9(t) for ORP. In this way we obtained four distinct lists for the four
walkers involved. Next, we ordered all jumps into a cumulative list in ascending temporal
order and moved the random walkers according to this list. By storing the time and the
CM’s coordinates after each jump we obtained CM’s trajectory. For every model and each
choice of the WTD (ERP or ORP, and value ofγ ) we generated 104 trajectories, in order
to obtain reasonably good statistics.

Figure 2 shows simulation results forQ, where the motion starts from a square
configuration, see figure 1(a) where CM’s mean square displacement〈R2(t)〉 is plotted
as a function of time, both for ORP and ERP. Evidently〈R2(t)〉 is diffusive at short and
long times, paralleling the results of [1, 2, 19]. These two limiting, diffusive regions are

Figure 2. 〈R2(t)〉 for Q’s CM for γ = 1.8, 1.5, 1.3 and 1.1 (from top to bottom) for an ERP.
The first two curves are simulation results for ORP (∗) and ERP (• ), which coincide at long
times. The light curves approximate CM’s short-time behaviour forγ = 1.8, equation (8), see
text for details.
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connected by a subdiffusive regime when the difference between the short- and the long-
time diffusion constants is large. Note thatQ’s overall motion resembles that of a polymer
ring. This, as in the case of [19], where large chains (N = 50) were considered, leads to
a subdiffusive behaviour, reminiscent of Rouse-type motion and of reptation [20, 21]. In
our model, however, as in [19], the interaction between the surroundings andQ is wholly
described by the WTD, and the subdiffusive cross-over behaviour results from the WTD’s
algebraic form; exponential WTDs lead to a simple diffusion of the CM [1].

Note that in figure 2 the scales are logarithmic and the different dynamical regimes may
stretch over several orders of magnitude in time. The〈R2(t)〉 values forS’s andT ’s CM
show a similar behaviour.

To understand the behaviour we note first that according to [9] the Laplace transform
of the average numberN(t) of renewals in(0, t) is

N∗(s) = 9∗1(s)
s[1−9∗(s)] (5)

where91(t) = 9(t) for ORPs and91(t) = 90(t) for ERPs. For short times91(t) ≈ 91(0).
With this approximation equation (5) reads fors →∞

N∗(s) ≈ 91(0)

s2
(6)

and hence, for smallt

N(t) = 〈n(t)〉 ≈ 91(0)t. (7)

For ERPs equation (7) equals equation (2), since91(0) = 90(0) = 1/µ, see equation (1).
Now as long asN(t) 6 1 holds, one is at the stage of the first jump of a walker. Using
equation (7) the CM’s mean square displacement for short times is

〈R2(t)〉 = 4b291(0)t (8)

whereb2 is the mean square displacement of the CM per jump. It is immediate to verify that
for the first jump (whereQ starts from a square configuration)b2

S = a2
S , b2

Q = 1/8a2
Q and

b2
T = 1/6a2

T hold. Figure 2 shows exemplarily forγ = 1.8 that equation (8) approximates
Q’s CM mean square displacement at short times well both for ORP and ERP. The same
holds for the other values ofγ which we considered (γ = 1.5, 1.3 and 1.1) and also
for the systemsS andT . For larget the behaviour of〈R2(t)〉 is again diffusive, but the
corresponding diffusion constant is smaller than the value which follows from equation (8).
We now turn to the discussion of this long-time behaviour.

4. The long-time diffusion constant

To understand the long-time behaviour we have to take into account the interplay between
the temporal aspect of the motion (WTD) and the holonomic constraints. Note that series of
jumps involving the same walker are very common whenγ is small; however, if a walker
moves twice in succession each of the models considered (S, Q andT ) returns to its initial
position without any change in the CM’s position. The same is true for the series of jumps
involving several walkers; as long as not all walkers move, the systems are (vide infra for
a discussion of subtleties) in general, confined to a limited region in space. The basic idea
is hence that of pinning [1, 2], i.e. the fact that the long-time diffusion constant vanishes
when at least one walker does not move from its initial position. To account for pinning
we follow [2] and denote by effective steps the minimal sequences in a fixed, preassigned
series of jumps which start, say, with a jump of random walker 1 and end just before a
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jump of 1, such that between these two events 2, 3 and 4 have each performed at least one
jump. The effective steps cover the set of jumps completely, so that each jump belongs
to exactly one effective step. Two examples for effective steps may be 122234333241
and 11111233311141. The end of an effective step is the starting point of the next one.
If correlations between effective steps are disregarded, the long-time diffusion constant is
given by [2]:

D = c2

〈T 〉 (9)

wherec2 is the mean square displacement of the CM per effective step and〈T 〉 its mean
duration. Since

〈T 〉 = t

〈ns(t)〉 (10)

one now needs to evaluate〈ns(t)〉, the overall mean number of effective steps for a given
set of jumps. An exact, analytical expression for〈ns(t)〉 is hard to obtain; what is now
helpful is the fact that according to [2] the following inequalities hold:

〈nr(t)〉 6 〈ns(t)〉 6 (N − 1)〈nr(t)〉 (11)

whereN is the number of involved random walkers (hereN = 4) and〈nr(t)〉 is the mean
number of returns of, say, walker 1. A return of 1 occurs if between two consecutive jumps
of 1 jumps of all three other random walkers take place. Inequalities (11) result from the
fact that each return of 1 corresponds to an effective step of the overall process (the reverse
is, in general, not true) and that the end of each effective step lies either within a return of
2, of 3 or of 4. Now〈nr(t)〉 equalsp〈n(t)〉, with p being the probability that an arbitrary
jump of 1 is the starting point of a return [2]. Since we haveH(t, ξ) = H(ξ) for ERPs,p
is given by

p =
∫ ∞

0
dξ 9(ξ)H(ξ)3 = 6(γ − 1)3

(2γ − 1)(3γ − 2)(4γ − 3)
. (12)

Equation (12) makes it possible to estimateD,

6c2(γ − 1)4

(2γ − 1)(3γ − 2)(4γ − 3)
6 D 6 18c2(γ − 1)4

(2γ − 1)(3γ − 2)(4γ − 3)
. (13)

By considering CM’s possible displacements after one effective step and determing the
largest one we find that max{c2

Q} = 65
8 a

2
Q = 8.125a2

Q and max{c2
T } = 29 200

6561 a
2
T ' 4.451a2

T .
We can thus boundc2 in equation (13) from above and have (forQ and T ) as an
approximation forD

D = k 6(γ − 1)4

(2γ − 1)(3γ − 2)(4γ − 3)
(14)

wherek is left to be a fitting parameter (the caseS requires a more detailed discussion,
vide infra). In figure 3 we have plotted the results ofD found from numerical simulations
for all three models in a wide range ofγ -parameters. ForQ and T the plotted results
are practically indistinguishable. A least squares fit to the data, using equation (14) leads
to kQ = 2.655± 0.07 andkT = 2.625± 0.03. In figure 3 we plot equation (14) using
k = 2.6; this choice turns out to be very good in the range 1.1 6 γ 6 10, as can be seen
by inspection. We conclude that the structure of equation (14) is, indeed, correct. Note that
the equation contains both the spatial restrictions (form of the expression) as well as the
influence of the WTD9(t) (value ofγ ).
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Figure 3. Long-time diffusion constantD for S (�), Q (⊗) andT (• ) as a function ofγ . The
full curves represent equation (14) fork = 2.6 (lower curve) and equation (17) (upper curve).

Astonishingly at first, from figure 3 it turns out thatS moves faster thanQ andT and
that theγ -dependence ofD differs from equation (14), a fact which becomes especially
clear at values ofγ close to unity. The reason for these findings can be understood when
realizing thatS’s CM motion decouples in thex- and y-direction. Note that jumps ofS
related to, say, 2 and 4 force 1 and 3 to follow, see figure 1(b). In the configurationS
walker 1 can hence move even when we do not relate a jump to it; here pinning of a walker
and no jumps related to it are two different concepts. It follows that equations (13) and
(14) are not suitable to describeS’s long-time diffusion constant.

A careful analysis shows thatS moves like a dumbbell both in thex- andy-direction.
For a dumbbell, considering the two-walkers motion leads to [1]:

〈ns(t)〉 = 〈nr(t)〉. (15)

This, paralleling the expressions above, results for a dumbbell in:

D = k (γ − 1)2

2γ − 1
(16)

with k ' 4 [1]. We expect forS therefore:

〈R2(t)〉 = 〈R2
x(t)+ R2

y(t)〉 = 2Dt = 8
(γ − 1)2

2γ − 1
. (17)

In figure 3 we have also plotted equation (17); the result is in very good agreement with
our numerical simulations, as can be seen by inspection.

As a final note we remark that the expressions forD at long times, equations (14) and
(16), depend on powers of(γ − 1). Hence, the closerγ approaches unity, the larger the
subdiffusive, cross-over region. On the other hand, forγ � 1, the CM’s motion is nearly
diffusive at all times.

5. Conclusions

In this paper we have studied the motion of three different arrangements, each involving
four random walkers, which are coupled through holonomic constraints. The random
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walkers jump according to algebraic WTDs. The CM’s mean square displacement behaves
diffusively both at short and long times, with a subdiffusive crossover region in between.
Interestingly, the constraints lead to qualitatively different long-time behaviours, depending
on whether decoupling of the motion occurs (as forS) or not (as forQ andT ). This effect
is fundamental, whereas the question of dimensionality (Q moves in two dimensions,T
moves in three dimensions) is secondary.
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